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ABSTRACT /f;]g.é L

Wind-tunnel investigations of aeroelastic models often require that rigid
body as well as elastic modes of the test article be simulated. In effect, the
mount system must allow the model to be "flown" in the test section and have
negligible aerodynamic interference at transonic Mach numbers. Such a system
has been developed for flutter and gust response investigations on complete
models in the NASA Langley transonic dynamics tunnel. The system consists of
a pair of cables which pass through pulleys in the model and run upstream and
downstream of the test section in mutually perpendicular planes. Stability
and natural frequencies of the cable-supported model are controlled by the pre-
load tension in a spring in one of the cables. The paper describes some eval-
uation tests and presents a stability analysis which shows the influence of
various parameters that govern dynamic characteristics of the system.




A NEW "FREE-FLIGHT" MOUNT SYSTEM FOR HIGH-SPEED
WIND-TUNNEL FLUTTER MODELS*

By Wilmer H. Reed III and Frank T. Abbott, Jr.

NASA Langley Research Center

INTRODUCTION

Wind-tunnel investigations in such areas as flutter, gust response,
dynamic stability and the like often require that the dynamic behavior of the
test article in free flight be simulated. For example, flutter instabilities
on an aircraft may involve interaction between elastic and rigid-body modes.
If, in wind-tunnel studies of the problem, these modes are significantly
altered by constraining forces associated with the model support device, cor-
responding alterations in the flutter characteristics of the model as compared
with those of the free-flying aircraft might be expected. On the other hand,
if the model is mounted in some arbitrary manner that might permit simulation
of free-flight rigid-body modes, we have no guarantee that the resulting sys-
tem will be satisfactory. In fact, without careful consideration of the
dynamics of the overall system, violent instabilities may occur, making the
dynamic behavior of the model on its mount strikingly different from what it
would be in free flight.

The present paper concerns a new free-flight mount system that has been
developed for flutter and gust response studies in the NASA Langley transonic
dynamics tunnel. Practical experience with the present and some earlier mount
systems is described, and a stability analysis presented to show the influence
of various controllable parameters in the dynamic characteristics of the
system.

SYMBOLS
a horizontal distance between center of gravity and outer cable-
tangency-point on rear pulleys (positive when c.g. ahead of rear
pulleys)
b span of wing
c mean aerodynamic chord

*Patent disclosure submitted.
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aj j,bij,C1j coefficients in longitudinal equations of motion

aij:gijyéij coefficients in lateral equations of motion
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horizontal distance between model plane of symmetry and outer cable-
tangency-point on rear pulleys

horizontal distance between model center of gravity and outer cable-
tangency-point on front pulleys

acceleration due to gravity

vertical distance between model center of gravity and outer cable-
tangency-point on front pulleys

product of inertia

spring constant

cable stiffness influence coefficient giving increment in cable
restraining forces or moments in mode 1 due to unit deflection
in mode

length of cable 1 from wall attachment point outer cable-tangency-
point on pulley 1

roll, pitch, and yaw moments about x-, y-, and z-axes, respectively
mass of model including pulleys

static stick-fixed-neutral point

dynamic pressure, %QUE

radius of gyration about x-, y-, and z-axes, respectively

Laplace operator

wing area

wind~tunnel test-section velocity
weight of model including pulleys
displacement coordinates of model center of gravity

external forces on model

Drag

coefficient of drag, 3




Cpg Cp at a=0

CL coefficient of lift, Légt
Cro C;, at a =0
Cy rolling-moment coefficient, Ioiting moment
gSb
Cm pitching-moment coefficient, PltchiggcmOment
Cmo Cm at =93 =0
Cn yawing-moment coefficient, Yaw1n§S§oment
c side-force coefficient, 2ide force
Y ’ aSc
a angle of attack, 6, +6 + %
B angle of sideslip, % -V

B1,B> angle in vertical plane between x axis and cables 1 and 2,
respectively

BB’Bh angle in horizontal plane between x axis and cables 3 and &4,
respectively

Br angle in horizontal plane between x axis and rear cables for
trimmed flight

do elevator deflection angle for trimmed flight

s effective viscous damping ratio of mount in mode 1 for no wind
condition

14 damping ratio of model in flight

n real part of root of characteristic equation

6 pitch angle pertubation from trim condition

8qg pitch angle of trimmed flight

6 =80 +6

p mass density of wind-tunnel test medium
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[an}
wn

% om
® angle of roll
¥ angle of yaw
w circular frequency
K s
i
oy - |
wn undamped natural frequency
Stability derivatives are indicated by subscript notation; for example:
oC oc oC
“ir = =5 Cnp = = Cmg = =
5| ¥ S 22 d &
U 2U 2U
C = ?C—y C = _aC_L et
B~ 3 Lo ™ 32 c
Subscripts:
1,2,3,4 cable numbers (see fig. 12)
F front
R rear

GENERAL REMARKS

Mount System Requirements

Let us consider some general requirements which represent desirable and
perhaps essential features in a free-flight mount system (see fig. 1). First,
the system should provide a soft support such that the natural frequencies
associated with the mount are well below the frequencies of the free-flight
rigid body and elastic modes of interest. A soft support implies that the
model should be given freedom to respond with large amplitude motions. A
second requirement is that moving masses associated with the mount are negli-
gible relative to the total mass of the test article. Also, aerodynamic
interference associated with mount structure exposed to the airstream should
be low, especially if the system is to be operated at high subsonic or tran-
sonic Mach numbers. Another very important requirement is that the system
have both static and dynamic stability under all operating conditions. In
cases where it is necessary to simulate the steady-state air loads
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corresponding to level flight (Froude number simulation), the mount should be
capable of applying a steady vertical force to the model which is essentially
independent of model motions. Finally, a simple, passive system is preferred
over one requiring black boxes or other complex gadgetry in order to meet the
above requirements.

Some Typical Systems

Various techniques for mounting dynamic wind-tunnel models have been pro-
posed (see, for example ref. 1), Some typical systems with which the authors
are familiar will be discussed with the aid of schematic diagrams shown in
figure 2. (Motion pictures illustrating the performance of models utilizing
these systems are presented in the oral version of the paper.) The tow-line
mount system, described in reference 2, has low aerodynamic interference and
provides considerable freedom of motion for the model in all but the longi-
tudinal direction. The major drawback of the system is that a complex, fast-
response, agutopilot is generally required in order to achieve satisfactory
lateral stability and keep the model flying within the confines of the tun-
nel test section. With the endless wire mount system the model is attached
to a vertical wire which passes through pulleys outside of the tunnel to form
a continuous loop. While this system has a number of desirable qualities
previously mentioned, it was found that models mounted in this way tended to
become unstable in yaw. The vertical rod mount system was developed by
Boeing Airplane Company and has been used successfully in low-speed wind-
tunnel tests for many years (see refs. 3 and 4). At transonic Mach numbers,
however, shock waves generated by the rod support become a problem as well as
deflections of the rod under high drag loads. The mount system which appears
to satisfy the greatest number of the previously mentioned requirements is
the two-cable mount, which is the subject of the present paper.

TWO-CABLE MOUNT SYSTEM

Description

The basic two-cable mount system is shown schematically in figure 3.
The model is held by two cable loops, one extending to the tunnel walls in
the upstream direction and the other in the downstream direction. One loop
lies in a vertical plane (either upstream or downstream as best suits the
model) and the other loop is in a horizontal plane. Each cable loop passes
through pulleys located within the fuselage contour. The cables are kept
under tension by stretching a soft spring in the rear cables. The model
has freedom to translate horizontally and vertically as well as to rotate
in pitch, roll, and yaw. With springs in both cables the model can also be
given freedom to translate fore and aft.

Since the model has considerable freedom of motion, it is necessary to
provide remote trim controls to keep it centered in the tunnel throughout the
test range. Usually only pitch and roll trim control are required. Experi-
ence has shown that models can be easily flown by a single operator or



"pilot," using a miniature airplane-type control stick which actuates pitch
and roll control surfaces on the model.

Three key parameters that influence the dynamic characteristics of the
system shown in figure 3 are:

e distance from front pulleys to center of gravity
a distance from rear pulleys to center of gravity
Tr tension in rear cables

The ability to vary these parameters for a given model provides one with
a "handle" by which the stability and flying characteristics of the model can
be regulated. The lengths and angles of the cable loops can also be adjusted
to satisfy particular requirements. For example, by using unequal angles in
the cable loop that lies in a vertical plane, a resultant vertical force may
be applied to the model. Since the cables are long (long relative to model
deflections) and have tension applied through a soft spring, this resultant
vertical force is approximately independent of model motion, and thus provides
a reasonable simulation of gravitational forces. By varying tension in the
cables steady-state loads on the model can be properly simulated - a feature
that may be required when elastic deformations due to steady loads on the
aircraft are of importance.

Wind-Tunnel Model

A specific application of the two-cable mount system will now be discussed.
Wind-tunnel and theoretical studies of the dynamic characteristics of the mount
have been conducted for a model of a modern jet transport. (Similar experience
with the present mount system has also been obtained on a supersonic fighter
configuration.)

The model, pictured in figures 4 and 5, has a span of approximately
8.5 feet and weighs 70 pounds. It is restrained by a 3/52—inch-diameter for-
ward cable and a 1/16-inch-diameter rear cable through which the tension is
applied. Forward and aft pulley locations in the model are e/c = 1.6 and
afc = 0. When the model is centered in the tunnel, the length of the cables
from the model to the wall attachment points is approximately 20 feet; the
forward cables are in a vertical plane and the rearward cables in a horizontal
plane. The cut-away view in figure 4 gives a schematic indication of the
pulley installation. Figure 5 shows the model in a preflight attitude. The
large static deflection of the model, which amounts to about 5 feet for the
condition shown, 1s indicative of the softness of the restraining forces
involved. Electrical leads for the trim control actuators and accelerometers
in the model enter the underside of the fuselage near the center of gravity
and are supported at the downstream end by a sting, as can be seen in
figures 4 and 5.




Stability Analysis

Equations of motion for the two-cable mount system are derived in the
appendix for the general case of six degrees of freedom. Cable-restraining
forces are represented in the analysis by a set of stiffness influence coeffi-
cients kis which give the cable force or moment in mode i due to a unit
deflection in mode Jj. ZEquations for these coefficients in terms of the sys-
tem parameters are given in table 2. It can be shown that with the assump-
tion of small pertubations from trimmed flight, which make the equations of
motion linear, the lateral equations and longitudinal equations for the cable-
restrained model are uncoupled and can thus be treated separately as in con-
ventional linearized stability analyses for free-flight conditions (see, for
example, ref. 5). Energy dissipation in the pulleys is accounted for by
means of an effective viscous damping in each mode.

In the present analysis, a soft spring was assumed to be only in the
rear cable, thus the fore-and-aft degree of freedom is suppressed. With this
assumption, the dynamic behavior of the system is determined from the roots of
a fourth-order characteristic equation for the longitudinal modes and a sixth-
order characteristic equation for the lateral modes (see eqs. (12) and (15)
in appendix). Tunnel conditions assumed in the analysis are 225 pounds per
square foot dynamic pressure and 0.89 Mach number. The aerodynamic deriva-
tives (see table 1) were estimated by the aircraft manufacturer. Damping
introduced by the pulleys was assumed to be 5 percent of critical damping for
all modes. kgn = 0.05.)

RESULTS AND DISCUSSION

Root-Locus Plots

Before presenting results of the study, it might be appropriate to men-
tion certain features of the root-locus method which will be used to interpret
the dynamic characteristics of the system. This method involves plotting
roots of the characteristic equation in the complex plane. As shown in
figure 6 the imaginary axis indicates the circular frequency of a natural mode
and the real axis gives a measure of the damping. The radial distance from
the origin to a complex root is the undamped natural frequency wp and the

- - _1_
angle between the radial vector and the =*iw axis is equal sin~-{,, where
;n is the damping ratio relative to critical damping. The system is stable

vhen the real part of every root has s negative sign and is neutrally stable
when a root lies on the imaginary axis. A more complete description of the
method may be found in reference 5.

Figure 7 shows a typical root-locus plot for the longitudinal modes as
tension in the rear cable is varied from O to 2.0 times the model weight.
(Since the complex roots appear in conjugate pairs, only the upper half of the
complex plane is presented.) Shown for comparison is the corresponding short-
period mode for free-flight conditions. Note that two oscillatory modes are
present for the cable-restrained model. One mode closely corresponds to the
free-flight short-period mode and the other is a lightly damped low-frequency
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mode which involves primarily vertical translation of the model. This latter
mode is associated with the mount restraints and has no counterpart in free
flight. The corresponding root-locus plot for the lateral modes is presented
in figure 8. Again, both the free-flight and the mount modes are shown.

When the model is in free flight, the characteristic equation is of fourth
order having one pair of complex conjugate roots and two real roots. The
complex roots characterize the Dutch-roll oscillation mode; the real roots
are associated with a hegvily damped roll mode and an almost neutrally damped
spiral mode. When cable restraints are added, the free-flight roots are
altered slightly and a new pair of complex conjugate roots comes into the
picture. This root involves primarily lateral translation of the model and,
as can be seen in figure 8, is unstable except when the tension applied to
the rear cable exceeds approximately the weight of the model. These trends
are in good qualitative agreement with the experimental results. Motion
pictures are available showing the development of lateral instability as
cable tension is reduced below TR/W = 1.0.

The root-locus plots given in figures 7 and 8 for various cable tensions
are representative of the plots obtained when other parameters are varied in
that the free-flight modes are altered slightly and new low-frequency modes
are introduced because of the mount restraints. The question of primary
interest, then, is whether these mount modes have stable or unstable damping
characteristics. Therefore, in the following discussion attention will be
focused on the damping ratio associated with the longitudinal and lateral
mount modes.

Stability of Mount Modes

Effect of front pulley location.- Figure 9 illustrates the effect of
varying the location of the front pulleys when the rear pulleys are at the
center of gravity. (See table 1 for values assumed for other parameters in
the calculations.) Here it can be seen that the longitudinal mode has satis-
factory damping for all conditions; however, the lateral mode for most front
pulley locations is unstable when TR/W < 1.0. (Negative values of { indi-

cate unstable oscillations.) Note that for zero rear cable tension there is

a close correspondence between the present system and the tow-line mount.

Thus the requirement for an autopilot to stabilize a tow-line model, such as
reference 2, is also evidenced here by the predicted lateral instability shown
when TR/W = 0.

Effect of rear pulley location.- Figure 10 indicates the influence of
rear pulley location on stability of the mount modes. The front pulleys were
assumed to be 1.5c¢ ahead of the center of gravity for these calculations.

The parameter being varied, a/c, is taken to be positive when the rear

pulleys are aft of the center of gravity. Again, as in the previous case, it
is seen that increasing tension in the rear cable has a significant stabilizing
influence. Also with tension applied, moving the rear cables aft increases

the stability. On the basis of figures 9 and 10 it appears that pulleys
equally spaced shead and behind the c.g. a distance of, say, one mean
aerodynamic chord would provide adequate stability over a somewhat larger

range of cable-tension values than was possible on the model which had the

rear pulleys at the c.g. Equal fore and aft spacing of the pulleys relative




to the c.g. also tends to reduce the coupling between pitch and vertical
translation - a feature that may be desired in order to avoid large variations
between the no-wind and flight-attitude angle of the model.

Effect of static margin.- In the previcusly discussed results it was
found both analytically and experimentally that the longitudinal mount mode was
stable for all conditions considered. Let us now examine analytically how
longitudinal stability is influenced by changes in the static margin of the
model. The static margin, defined as the distance between the stick-fixed
neutral point and the c.g. of the model in mean aerodynamic chords, was varied
by moving the c.g. and at the same time the pulley locations such that
efc = 1.5 and afc =0. Variations in the moment of inertia due to c.g.
changes were neglected. The results are given in figure 11. Note that as the
c.g. 1s moved aft the stability of the mount mode falls off rather abruptly
for all values of cable tension considered. (The nominal c.g. location used
in other cases was 0.25c giving a static margin of 0.263c.) Thus it might be
concluded that configurations having a small margin of static stability in
free flight are likely to develop instabilities when restrained by cables
in a wind tunnel.

CONCLUDING REMARKS

It has been shown that by means of a rather simple two-cable mount system
the free-flight rigid-body modes of complete aireraft can be closely simulated
in a wind tunnel. A stability analysis and wind-tunnel evaluation of the
system indicate that by proper selection of such parameters as cable tension
and pulley spacing, stable dynamic behavior of the mount can be achieved over
a broad range of test conditions. In addition to flutter and gust response
applications, the system offers potential as a research tool for measuring
stability derivatives and maneuver loads on complete aeroelastic models.




APPENDIX

STABILITY ANALYSIS OF CABLE MOUNT SYSTEM

Consider the cable configuration shown schematically in figure 12.
The x, Yy, and 2z axes form a right-hand set of space-fixed orthogonal
coordinates with the origin at the center of gravity of the model in steady
trimmed flight. The model is assumed to be rigid so that its motion is com-
pletely described by six degrees of freedom - namely, x, Yy, and 2 trans-
lations of the center of gravity and @, 6, V rotations about the Xx, V¥,
and z axes, respectively. The equations of motion are linearized by the
assumption of small pertubations from trimmed flight. Inertia and vibratory
characteristics of the restraining cables are neglected.

The dynamical equations of motion for the system can be written as
follows:

Longitudinal translation:

Lateral translation:
Yo + Yo = my (1b)
Vertical translation:
ZC + ZA + mg = m’i (lC)
Roll:
Lo + Ly = 1 om - I ¥ (1d)
Pitch:
MC + MA = rygmé' (le)
Yaw:
No + Ny = r,%mp - I,% (1£)

Where the C and A subscripts denote cable and aerodynamic terms,
respectively.

Cable Restraints
As shown in figure 12 the particular cable configuration chosen for
analysis has the forward cables in a vertical plane and the rearward cables
in a horizontal plane. Tension is applied to the cables by stretching a

soft spring in the rear cable. It has been assumed that in trimmed flight
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the rear cables are symmetrical with respect to the plane of symmetry of the
model; however, in order to permit the possibility of applying a steady-state
vertical force to the model, the cable angle of the upper front cable By is
not necessarily the same as that of the lower front cable Bo.

The total forces and moment about the center of gravity are obtained by
summing the contribution of each of the four cables:

Xe = ¥c1 * %oz + %oz * %oy (22)
Yo = Yoy + Yoo + Yoz + gy (2p)
Zg = Zgy + Zop + Zg3 + Loy (2c)
Lo = (b + eB)Yqy - (b - eB)Y,, - (a8 - d9)¥c3 - (a8 + ap)¥ey
+.ih¢ + ey)Zy - (hp - e¥)Zy, - (d + aw)z03 +(a - a¥)Zy, (24)
Mo = -(h + e8)Xy; + (b - eé)x02 + (ab - dp)Xgs + (a6 + A9)Xy

+ (b - e)Zpy - (b8 + e)Zgp + (a - dy)Zes + (a + Q)2 (2e)

No = -(e¥ +hp)Xgy - (ev - b9)Xpo + (d + ay)Xgz - (d - av)Xy,
+ (e - h8)Ypp + (e + h8)Yn, + (ay - a)ch - (ay + a)¥y, (2f)

where 6 =60 +6. The x, y, and 2z components of tension in each cable
are assumed to act at the outermost point of tangency between the cable and
its pulley, and the model center of gravity is assumed to be on the line formed
by the intersection of the planes of symmetry of the front and rear pulleys.
From the geometry of the situation, these force components can be expressed:

Xo1 = T cos By, Yoy = -Tp %%? Zoq = -Tp sin ﬁ;
XCQ = Tp cos Bo, YC2 = -TF %ﬁ? ZC2 = Tp sin Bo
XC3 = TR cos BB’ YC3 = -Ty sin B3, Z03 = -Tg ;% (3)
Xop = -Tg cos By, Yo, =Tg sin By, | ZCA = -Tg EE
/

The terms on the right-hand side of equations (3) consist of a steady-
state part plus increments proportional to motions of the model. By way of
illustration consider the vertical component of force on pulley number 1
(see egs. (3) and fig. 12).
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which can be written

Zoy = Zoa, A2y

Tp sin By - ATp sin By - AB1Tf cos B3 (&)

The increments ATy and APy can, in turn, be expressed in terms of
pertubations of the model center of gravity as follows:

ATp = kp(A1y + Alp)
= kF[KZl sin By ~ Xp cos Bl) - (z2 cos By + X, COS Beﬂ (5)
and
X . Z]
M3y = =— sin By + =— cos B (6)
1 11 1 11 1

where x; and 2z, denote components of displacement of the outermost points
of cable tangency on pulley n

xl=x-h§, Zl Z—eé

(7)

Xp = X + h§, Zp =2 + ef

Thus, with equations (5), (6), and (7) substituted into equation (4) the
vertical-force component on pulley 1 can be written in the form

Zer = Z1, - KaxyX - Kzzp? - Kgpg8 (8)

where the coefficients kijl are stiffness~influence coefficients associated

with the upper front cable which goes to pulley 1. In a similar manner the
three components of cable force are derived for each of the four pulleys.

When these relations are substituted into equations (2) and all terms involving

products of the pertubations x, y, 2z, ¢, 6, and ¢ discarded, the fol-
lowing set of linear relations are obtained for cable restraints on the over-
all system:

XC = XCO - kxxx - ksz - kxee (98')
Yo = -kyyy - kyQQ - kg (9b)
Zg = Zg, - KpxX - Kgpz - kyg8 (9¢)

Lo = gy = kogP - Koy (94)
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Mo = Mg, - KgoX - kg2 - Ky (9e)

No = -kyy¥ - Ky - Ky ¥ (9f)

Equations for the steady-state terms and the influence coefficients appearing
in equations (9) are given in table 2.

It is important to note in equations (9) that the cable restraints produce
no coupling between the longitudinal modes (X, 2z, and ©) and the lateral
modes (y, @, and V¥). Thus, if the lateral and longitudinal modes of an
aircraft configuration can be isolated and studied separately for free-flight
conditions, as is most generally done in linearized stability analyses, the
same simplifications can also be enjoyed for the cable-supported model. The

assumption of separable longitudinal and lateral modes will be made through-
out the remainder of the present analysis.

Aerodynamic Forces and Moments
For small pertubations from the space-fixed axes considered herein and
with the assumption x/U,y/U,%/U << 1.0, the aerodynamic forces and moments
about the center of gravity of the model can be expressed as follows:

Longitudinal modes:

Xp —qS[(CDO + CDC(,BO) + 2(CDO + CDQBO)%

z
* (CDa = Cro - Crgfo - CLSSO)ﬁ * CDaé] (10a)

Zp = -qS{KCLO + Cr B0 + CL650> + 2(CLO +Cr B0 + CLgso)%

2
+ (CLQL + Cp, + Cpfo)f * CLaﬂ (10b)

z ., ¢ Z c :
+ Cma ﬁ + E Cm(l ﬁ + Cmale + E(Cm& + Cmq)e] (lOC)

Lateral modes:

Ld b .
Yp = qS{kCyB - Cpy - CDQQO)% + (CLO + CLQGO + CL550)¢ + CYp = P

- Cyg¥ + Cy_ ;—U"’] (11a)
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The terms on the right-hand side of equations (12) are the static aero-
dynamic and cable restraint forces and moments acting on the model. They are
defined

T T

X = X * XAo = 7§(cos B1 + cos 62) -2 i? cos B3
- @200 - Uo(CDO + cDaeo) (13a)
T

F
Zo = ZCo + ZAO ;r(sin Bo - sin Bl) - mﬁeeo + g
- Uo(cLo + Cr 8o + CL680) (13b)

Mg =Mg. + My = *TF sin B sin Bs - h 0s + B cos B
o Ao"rygm 1 - 2~ g Cos B+ 2

afg80
Uagc
7 + _ry2(cm° + Cmg0 + CmgBo) (13¢)

These equations set equal to zero define the conditions on Ty, 6g, and
8o which must be simultaneously satisfied in steady trimmed flight with spec-
ified tension in the rear cables. (T and 6, are required to evaluate the

cable influence coefficients in table 2.) In most instances it is not neces-
sary to know precise values for T, 6o, and 8y and they may therefore be

calculated independently in the following approximate manner:

In equation (13a) neglect 6, and solve for Tp

cos 65 mUO'CDo
TF = 2TR(cos By + cos Bz) * o5 By * cos Bo (1ha)
In equation (13b) neglect &, and 6, and, with Tp as given by
equation (1l4a), solve for 6g
_ 1 |Tr/., CL,
0o = UGCLa[ér(Sln Bo - sin Bl) + gl - EE; (14b)
From equation (13c) solve for the remaining unknown &g
c. +C_ o
eTf h h Mo MWy O
= oo (g _ si L a S o S 1h
8y = mcUch6<81n By sin Bo < COs B + S COS Bg) Cm5 ( c)

(Note from the latter two equations that when g7 = Bp the cable restraints
do not affect 6o or dp.)
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TABLE 1.~ CONDITIONS

Physical properties of model:

Weight, W, 1b . .

Wing span, b, ft

Wing area, S, sq ft .
Mean aerodynamic chord,
Moments of inertia:

Iy = mrxz, slug—ft2

I, = mrze, slug-ft°

= 2 _prl
y = mryS, slug-ft

IXZ, Slug—ft2 ® 8 & 8 o e o o

ASSUMED FOR

Center-of-gravity location (nominal) . : .
Stick fixed neutral point, N

Aerodynamic derivatives:

CLO e o o o

CLQ, e o s o
C, (nominal)

Test conditions:

Test medium .

Dynamic pressure,

e o o & .
s e « o .
. e - o

STABILITY ANALYSIS

e s . . . L]
. e o & @ .
. . . s s
. - e e o o . .
e o o o o . .
. * o e ¢« o e
e o L] s o @
s o @ e o e o .
. » LI} L -
* o o ¢ o e »
. e o . .
. LI } . e o o
. e o o e e e .
e e o o e o o
. e e ¢ e o e o
. e e & s o
e e s o * o * o .
e @ o o e« o
. * ® ¢ e o & o
o o e s e " o
¢ & e e 8 e s .
. e e L3 . .
e o o . * e o
e o e . . e o
o o - 0 e -
. . e o e o o o
. . ) e« o o .

70.0
8.46
8.94
1.168
5.25
2.59

T.30
0]

0.25¢
0.513%c

0.035
0.02
0.3h4
N

-1.22

-3.85

-15.65
0
-0.725
0.105
0.0051
-0.0617
-0.401
0.078
0.117
-0.0199

-

i,
-0.124

Freon 12
225.0
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TABLE 1.- CONDITIONS ASSUMED FOR STABILITY ANALYSIS

Mach NUIDEY & o o ¢ o o o o o o o « o« o o o o o s o o o o
Velocity, Uy TH/56C ¢ o v v v 4 o 4 0 v o o o o o o o o »

1

-, sec” e o o e o e s s s s e s s s s e e e o e

2m

11

Mount system parameters:
Cable length, -Ll = 742 = 23 = Zh =y ft e & 6 e B s & » e

Cable angles, By = By, = 85 =By =, deg « o 0 0000 .

Front pulley separation distance, 2h, ft . . ¢« « « « « &
Rear pulley separation distance, 2d, ft . . « « « « ¢ o+ &
Pulley damping ratio, {, (all modes) . . . « « « « « « .
Front cable tension, Tp, 1b « o ¢ ¢« ¢ o 0o v ¢ o 0 o o o &

Rear Cable tenSion, TR, lb . .« ® o e & e o & s . e o .
Distance between center of gravity and front pulleys, e .

Distance between center of gravity and rear pulleys, a .
Spring constant in rear cable, kg, 1b/in. . . . . . . . .

Concluded

< 1.0
5.0



TABLE 2.- CABLE INFLUENCE COEFFICIENTS

[?ee egs. (9ﬂ

Longitudinal force:

XCO = TF(cos By + cos Bg) - 2Tg cos By - k, 46,
T 2T
kXX = If—i'- Sin2Bl + % Sin2B2 + TR—R SineaR + kF(COS Bl + cos [32)2 + )-I-k.R COsEBR

kyy = EE cos Bl sin Bl - EE cos B, sin BE
ll 1
- kF(cos Bl + cos Be)(sin Bl - sin B2)
kxe = - ?% sin Bl(h sin Bl + e cos Bl) + ?g sin Bg(h sin Bg + e cos BQ)

- kF(cos By + cos 62)[%(sin Bo> - sin Bl) + h(cos B, - cos Bgi]

Lateral force:

k_y.y =T_F+T_F+?.T..B.COSZBR
Sl 2 iR
=mo (B b
o = 3e{i - 2]
_ e e 2TR cos BR .
kYW = TF<-TI + TE) - —_—_TE____Qi sin BR + a cos BR)

Vertical force:

¢, = Tg(sin B, - sin By) - kz09
kox = kyz
a3y 2 T 2 2TR 3 i 2
k = = cos<B, + — cos“B, + — + kp(sin B, - sin B
2z © 7y 177, 2 " g r( 2 1)




Roll:

Koy

Koy

Pitch:

22
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TABLE 2.- CABLE INFLUENCE COEFFICIENTS - Continued

sin By cos B sin Bo cos B cosQB cosQB
—TFh< g cE 2>-TFe L — B o &
1 2 1 2 R

- kp(sin By - sin Bl)[e(sin Bp - sin By) - h(cos By - cos Bl)]
Wlp(s: + £ + sin B) + sin Bg> + 2dTR<f— + sin BR)

1 2 R
hTF(fi - {i> + TFe(sin B, - sin 82)

1 2
eTF(sin By - sin B2> - hTF(cos By - cos Bg> - kgg8,
kyo
k.0

2 1 . 2 .

TF[?l({i cos Bl + %i sin Bl) + TE(e cos Bo + h sin 52> + h<s1n By

+ sin BE) + e(cos Bl + cos Bgi] + 2TR a cos BR + kFW}(sin Br - sin Bl)

2
2a T
+ h(cos By - cos [32)]2 + R

IR




Il

TABLE 2.~ CABLE INFLUENCE COEFFICIENTS - Concluded

Kyy
hT i——“?—+cosB—cosB)
F(zl s 1 2

eTF(Z—e- + -;g + cos By + cos 132) + QTRE cos Bg + d sin Bp

‘..__I

+ 1_(a cos Bg + d sin BR)E]
IR
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Figure 1l.- Mount requirements.
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Figure 2.- Free-flight mount systems.




Figure 3.- Two-cable mount.
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Figure 4.- Model on two-cable mount.
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Figure 6.- Frequency and damping from root-locus plot.




e/c=1.5, a/c=0
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Figure T7.- Root locus of longitudinal modes.



e/c=1.5, a/c=0
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Figure 8.- Root locus of lateral modes.
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Figure 9.- Effect of front pulley location.
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Figure 10.- Effect of rear pulley location.
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e/c=1.5, a/c=0
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Figure 11.- Effect of static margin on longitudinal mode.
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